Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications.
نویسندگان
چکیده
With the emergence of "super bacteria" that are resistant to antibiotics, e.g., methicillin-resistant Staphylococcus aureus, novel antimicrobial therapies are needed to prevent associated hospitalizations and deaths. Bacteriophages and bacteria use cell lytic enzymes to kill host or competing bacteria, respectively, in natural environments. Taking inspiration from nature, we have employed a cell lytic enzyme, lysostaphin (Lst), with specific bactericidal activity against S. aureus, to generate anti-infective bandages. Lst was immobilized onto biocompatible fibers generated by electrospinning homogeneous solutions of cellulose, cellulose-chitosan, and cellulose-poly(methylmethacrylate) (PMMA) from 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), room temperature ionic liquid. Electron microscopic analysis shows that these fibers have submicron-scale diameter. The fibers were chemically treated to generate aldehyde groups for the covalent immobilization of Lst. The resulting Lst-functionalized cellulose fibers were processed to obtain bandage preparations that showed activity against S. aureus in an in vitro skin model with low toxicity toward keratinocytes, suggesting good biocompatibility for these materials as antimicrobial matrices in wound healing applications.
منابع مشابه
Development of antimicrobial chitosan based nanofiber dressings for wound healing applications
Objective(s): Chitosan based composite fine fibers were successfully produced via a centrifugal spinning technology. This study evaluates the ability of the composites to function as scaffolds for cell growth while maintaining an antibacterial activity. Materials and methods: Two sets of chitosan fiber composites were prepared, one filled with anti-microbial silver nanoparticles and another on...
متن کاملInfluence of blood and serum on the antistaphylococcal activity of lysostaphin.
Zygmunt, Walter A. (Mead Johnson & Co., Evansville, Ind.), Henry P. Browder, and Peter A. Tavormina. Influence of blood and serum on the antistaphylococcal activity of lysostaphin. J. Bacteriol. 91:725-728. 1966.-Human and animal sera, and in certain instances whole blood, exhibited a minimal antagonizing effect on the antistaphylococcal activity of lysostaphin. The presence of 50% human serum ...
متن کاملPreparation of tissue-engineered wound dressing consisting of chitosan fibers containing silver ion-doped bioactive nanoparticles for wound healing
Background: Wound healing is a complicated process involving the proliferation of the epithelial cells, deposition of granulation tissue as well as recruitment of inflammatory cells. It also is a hot topic of research for trauma, orthopedics and general surgery studies. There are many forms of cells involved in this process. This study aimed to design a tissue-engineered wound dressing consisti...
متن کاملFunctionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine.
Wound dressings based on bacterial cellulose (BC) can form a soft and conformable protective layer that can stimulate wound healing while preventing bacteria from entering the wound. Bacteria already present in the wound can, however, thrive in the moist environment created by the BC dressing which can aggravate the healing process. Possibilities to render the BC antimicrobial without affecting...
متن کاملPositively and negatively charged ionic modifications to cellulose assessed as cotton-based protease-lowering and hemostatic wound agents
Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and hemostatic phases of wound healing. Hemostasis and inflammation comprise two overlapping but distinct phases of wound healing wherein different dressing material properties are requi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 32 36 شماره
صفحات -
تاریخ انتشار 2011